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Abstract. The thermoelccvic effect in a semiconductor rupcrlatlicc in a non-quantized 
electric Beld is investigated for elections of the lowest muband in the Linear approamation 
of VT. Analytlcll expressionsfor the thermopower andthekatconductintycocfficient are 
obtained as functions of the superlattice parsmeters A and d ,  temperature, concentration 
and electric field E. The results confirm the fact thar tepending on the relation berueen A 
and other characteristic energies of the carrier chdrge (kT, E and h/r) the camer charges 
cm behave either as a quasi-two-dimensional or as a three-dimensional electron gas. The 
prospect of using a superlanice as a good-quality and highly efficient thermoelement is also 
proposed. 

1. Introduction 

Recent perfection of atomic-scale control over nucleation and growth using modem 
crystalgrowth techniquessuch asmolecularbeam andliquid-phaseepitaxy andchemical 
vapour deposition has made possible laboratory synthesis of ultrathin layer structures, 
such as the quantum well structure (aws) and superlattice (sL). 

This has led to the publication of a considerable number of papers, especially on 
the transport properties of SLS [l, 21. This includes among other factors the mobility, 
negative differential conductivity and absolute negative conductivity. There are also 
papers on phonon polariton modes in a semiconductor SL [3], electron-phonon inter- 
actions [4], magnetoplasmons and the quantum Hall effects [5] and so forth. 

Few papers have reported on the thermoelectric properties of su, even though good 
knowledge of this effect in SLS can enhance the production of a good-quality and highly 
efficient thermoelement. 

The thermopower of asL in the situation where2A 4 kBT( Tis the lattice temperature 
and kB is Boltzmann's constant) has been calculated [6] .  The anisotropic nature of the 
thermoelectric properties of a SL have been noted [7] and it is said that a study of this 
can give information about the density of states of the SL. The thermoelectric effects of 
a SL with the temperature gradient perpendicular to the SL axis has also been considered 
[SI. The thermopower of a quasi-two-dimensional (QZD) semiconductor QWS has also 
been studied [9]. 

The purpose of this paper is to study thermoelectric effects in a SL in the presence of 
a non-quantized electric field, with the field and VTalong the SL axis. Expressions for 
the thermopower and heat conductivity coefficient were obtained. 
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2. Theory 

The problem will be considered in the quasi-classical case, i.e. for 2A %- eEd, kBd VT, 
z-'(fi = 1) (where d is the SL period, 2A is the width of the lowest-energy miniband, e is 
the electron charge and z is the relaxation time of electron), by means of the Boltzmann 
kinetic equation 
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af(r,p,t)lat+ u(p)af(r,p,t)/ar + e ~ a f ( r , p , t ) l ~ p =  - [ f ( r , ~ , t )  - f o ( ~ ) l / z  (1) 

where the collision integral is taken in the T approximation and is further assumed 
constant [lo]. 

The solution of equation (1) for electrons in the lowest miniband of the SL in the 
linear approximation of VTis given as 

The current density is defined as 

i(t) = e C u(p)f(p, t )  
P 

and the density of heat current as 

(3) 

Substituting (2) into (3) and (4) and performing the transformation P - eEI+ P the 
following expressions are found for both the current density and the density of heat 
current: 
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(6)  
where 

P 1  e ( p )  = - + A [ l  -  COS(^,^)] 
2m (7) 

( m  is the transverse effective electron mass (in the XOY plane)) and 

u ( p )  = Adsin(p,d). (8) 

With the help of (5)-(8) the following expressions for j r  and q2 are obtained for a non- 
degenerate electron gas after a cumbersome calculation: 

i. = [ 4 W 4 V Z ( E / e  - q) + [o(E)/el[(A - E )  + 3kT- A(Io /~dI  v z T / T  (9) 

qz = [o(E)/eZl[(A - E )  + k T +  2kTQ - A(Io /Zl )QIVMe - q) + [@)/e‘I 
X [4(kT)‘ + 4(A - E)kT + ( A  - 6)’ - A(A - E)Io/Zl 
+ 4AkT(Zo/Zl)O - AkT(Zo/II) + 8(kT)’0 - A ( A  - E)(Zo/Ii)@ 
+ 2(A - E)kT@ + A’@] V,T/T. (10) 

The expression for qz in terms of V,( E/e - q) is not convenient when it comes to 
comparing theory with experiment; therefore as usual we shall express qz in terms of j ,  
and VT,. From (9) and (10) we obtain for qz the following expression: 

q z  = (k/e)I[(A - E)/kTl+ 1 + P - ( A / ~ T ) ( b / ~ d l Q I U z  

- [4E)/e2)I(kT)z  + [AkT(Io/Ii) 
+ 2(kT)’ + A* - A’(Z:/Zt)]@} V,T/T (11) 

where Io and I ,  are the modified Bessel functions of the argument A/kT, 

0 = [l + (eEdz)’]/[l + ( 2 e E d ~ ) ~ l  o(E) = [e’Ad’nr/(l + eEd~)~l ( I , /10) .  

From (11) the following kinetic coefficients are found: 

Peltier coefficient = IYT 

where (Y is the thermopower given as 

IY = (k/e){(A - E)/kT + 1 + [2 - (A/kT)(I&1)]@}. (13) 

The heat conductivity coefficient is given as 

K = [u(E)/e2]kzT{1 + [(A/kT)(Zo/Il)  + 2 + (A/kT)’ - (A/kT)’(I*/I:)]@). 

Considering the weak electric field eEda 

(14) 

1 we have 

a = (k/e)[(A - E)/kT + 3 - ( A / ~ W O / ~ I ) I  

K = (q /eZ)k2T[3  + (A/kT)(io/Zl)  + (A/kT)’ - (A/kT)’(Ii /I:)] 

(15) 

(16) 

where 

ull = e2Ad2na(Zl/Zo). 
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3. Results, discussion and conclusion 

We have obtained an analytic expression for the thermopower and heat conductivity 
coefficient of a SL. These resultscan be interpreted in termsof A in two ways, as indicated 
in [ll]. In [11] it is noted that the relation between A and the characteristic energies 
( 6 ,  kTand r-l) of the carrier charges allow the carriers to behave either as a QZD or as 
a three-dimensional ( 3 ~ )  electron gas. For example when A 4 kT the carrier charges 
behave as a QZD electron gas and at A 9 kT as a 3D electron gas. 

This proposition can be established by our results. For instance when A 4 kTusing 
the well known expressions for I o  and I at small values of the argument [12] we obtain 
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CY = (k/e)(-g/kT + 1) (17) 
K = (q/e2)kZT (18) 

E =  kTln(jch’n,d/mkT). 

where 

Equation (17) was first obtained by Shik [6].  A similar expression was obtained for a 
Q2D semiconductor QWS in [9]. In [9] it is indicated that the thermopower is enhanced 
above its value in the homogeneous (bulk) semiconductor for lower values of well 
thickness d and increases with increasing temperature T. Thus enhancement is greater 
at 77 K than at 300 K. 

For A S kTusing the asymptotic expression for lo,, [12] gives 

CY = (k/e)(-E/kT + n) 
K = %(u/e)kzT U = ne2r/m. 

It can therefore be noted from our result that there is a continuous change from a QZD 
to a 3~ system. Furthermore the presence of the field E in equations (13) and (14) can 
make it possible to control cuand K. 

In conclusion, the thermoelectric effect in a semiconductor SL in a non-quantized 
electric field has been investigated theoretically. 

An excellent analytical expression has been found for ol and K .  In our opinion an 
optimal selection of A and d for the SL can allow the use of a SL as a good-quality and 
efficient thermoelement. 
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